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Abstract— Classification and compression are common oper-
ations in image processing. Conventionally, compression and
classification algorithms are independent of each other and
performed sequentially. In this paper, a new algorithm is
developed, where the two operations are combined in order to
optimize some given classification metrics. In other words, the
compression ratio is maximized under classification constraints.
Compression is achieved using Adaptive Differential Pulse Code
Modulation (ADPCM), which has an adaptive predictor. The
predictor coefficients are updated in real-time by optimizing
a cost function based on classification metrics. Optimization is
done using a simple genetic algorithm. Computer simulations are
performed on hyperspectral images. The results are promising
and illustrate the performance of the algorithm under various
constraints and compression schemes.
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I. INTRODUCTION

Image classification is used to find special features of
an image. It is usually performed on the original image,
not the image after compression and decompression process.
Because of the large storage volume and spectral and spatial
sample data redundancy[1], it is better to compress hyper-
spectral images before classification. Obviously, there will
be classification error between pre- and post-compression
classifications. To reduce classification error, it is necessary
to improve the compression system with feedback from the
classifier.

In this paper, we combine the compression system and
classification system as in Fig. 1. Classification both on an
original image and on a decompressed image is implemented.
The error between them is fed back to help design the
ADPCM-based compression system. A genetic algorithm
based ADPCM is developed to realize this structure. We use
the genetic algorithm to choose the best filter coefficients in
ADPCM. The fitness function which measures the ADPCM
filter performance is the pre- and post-ADPCM classification
error. Fig. 2 shows the GA-ADPCM algorithm. In our experi-
ment, two ADPCM predictors are tested to minimize the mean
square error in the compression system. One is a Least Mean
Square (LMS) predictor, and the other is a Euclidian Direction
Search (EDS) predictor. LMS is a very simple algorithm,
and a good choice to update the predictor[2]. EDS[3][4] is a
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Fig. 1. System combining compression and classification.

relatively new algorithm that aims to increase the convergence
speed of the LMS. An unsupervised classification algorithm,
self-organizing map (SOM)[5], is used to classify images as
SOM has been successfully used to extract useful information
from a number of space mission data sets, as well as to
perform terrestrial studies[6]. A genetic algorithm (GA) is
used to minimize the classification error since GA provides a
general approach for searching for global minima or maxima
within a bounded, quantized search space[7].

II. REVIEW OF ALGORITHMS

A. REVIEW OF ADPCM SYSTEM[8]

Fig. 3(a) and (b) show the transmitter and receiver of the
ADPCM system, respectively. The signal to be transmitted or
stored is s(n). The output of the adaptive predictor is ŝ(n).
The input to the adaptive predictor is s̃(n). The difference
between the actual data and the predicted data is e(n)=s(n)-
ŝ(n). The quantized error to be transmitted or stored is ẽ(n).
In this paper, an adaptive quantizer named Jayant quantizer[8]
is used.

For least-square based algorithms, the exponentially
weighted least squares cost function is

Jn(w) ∆=
n∑

i=1

λn−ie2(i), (1)



Fig. 2. Genetic ADPCM algorithm.

Fig. 3. ADPCM: (a)transmitter,(b)receiver.

where e(i) = s(i) − wT (n)̃s(n), λ is the forgetting factor,
and s(i),w(n), s̃(n) are the desired signal, weight vector, and
input signal vector, respectively. Expanding the sum shows
that the cost function is quadratic,

Jn(w) = wT Q(n)w − 2wT r(n) + σ2
s(n), (2)

Q(n) =
n∑

i=1

λn−is̃(i)̃sT (i), (3)

r(n) =
n∑

i=1

λn−is(i)̃s(i), (4)

σ2
s(n) =

n∑

i=1

λn−is2(i). (5)

B. REVIEW OF LMS ALGORITHM

The Least Mean Square (LMS) is a very popular mean
square based adaptive algorithm that aims to minimize the
squared error in prediction. In image processing, the 2-D LMS
algorithm is used. The algorithm is as follows[8]:

Initialization :
w = 0
s̃(n1, n2) = 0, n1≤0, n2≤0

Algorithm :
For n2 = 0, 1, 2, ...

For n1 = 0, 1, 2, ...
s̃(n1, n2) = [s̃(n1, n2)s̃(n1, n2− 1)...s̃(n1, n2−M2)
s̃(n1 − 1, n2)s̃(n1 − 1, n2 − 1)...,
s̃(n1 −M1, n2 −M2)]T

ŝ(n1, n2) = ws̃(n1, n2)
e(n1, n2) = s(n1, n2)− ŝ(n1, n2)
ẽ(n1, n2) = Quantizer(e(n1, n2))
w = w + µs̃(n1, n2)ẽ(n1, n2)
s̃(n1, n2) = ŝ(n1, n2) + ẽ(n1, n2)
end n1

end n2.
Symbol w represents the predictor coefficient vector
(weights). Here the explicit dependence of w on the time
index n has been dropped. The symbols M1 and M2 are the
length of coefficients in each dimension. The symbol µ is
the step size. Other symbols are the same as in the previous
subsection.

C. REVIEW OF EDS ADAPTIVE ALGORITHM

The Euclidean Direction Search (EDS) algorithm is a least-
squares based algorithm that attempts to combine the benefits
of fast convergence for the Recursive Least Squares (RLS)
and the low computational complexity of the LMS. The
algorithm is as follows[8],

Initialization :
w = 0
s̃(n1, n2) = 0, n1≤0, n2≤0
Q = 0



r = 0
Algorithm :

For n2 = 0, 1, 2, ...
For n1 = 0, 1, 2, ...
s̃(n1, n2) = [s̃(n1, n2)s̃(n1, n2− 1)...s̃(n1, n2−M2)
s̃(n1 − 1, n2)s̃(n1 − 1, n2 − 1)...,
s̃(n1 −M1, n2 −M2)]T

ŝ(n1, n2) = ws̃(n1, n2)
e(n1, n2) = s(n1, n2)− ŝ(n1, n2)
ẽ(n1, n2) = Quantizer(e(n1, n2))
s̃(n1, n2) = ŝ(n1, n2) + ẽ(n1, n2)

For i = 1, 2, ..., N
ε = (qi)T w − ri

a = (qi)i

if a 6= 0, α = −ε/a
wi = wi + α
qi = λqi + (̃s(n1, n2))is̃T (n1, n2)
ri = λri + (̃s(n1, n2))is(n1, n2)
end i

end n1

end n2,
where Q(n) =

∑n
i=1 λn−is̃(i)̃sT (i), qi is the ith vector of Q,

(qi)i is the (i,i)th element of Q, r(n) =
∑n

i=1 λn−is(i)̃sT (i),
and wi, ri, (̃s(n1, n2))i are the ith elements of the corre-
sponding vectors. The symbol α is the step size. and N =
M1M2 is the total length of coefficients. Other symbols are
the same as in the previous subsection.

D. REVIEW OF SOM ALGORITHM

Self-organizing map (SOM) is an unsupervised neural
network-based classification algorithm. The basic idea of
SOM is non-linear mapping from the high-dimension input
vectors onto a 2-dimension layer of neurons so that the
similarities of the input data are reflected by the output
neurons[6]. There is a weight between each input vector
and corresponding neuron. Neurons compete with each other
according to the competition rule, which is usually the shortest
Euclidean distance between input vector and weight. Once
a neuron wins, its neighbor neurons and the weight are
updated[5].

E. REVIEW OF GENETIC ALGORITHM

A genetic algorithm is used to find approximate solutions
to optimization and search problems using techniques inspired
by evolutionary biology[9]. It first selects an initial population
of random individuals. Second, the fitness function of the
population is evaluated by using certain criteria. Third, it
does some genetic operations including inheritance, mutation,
selection, and crossover[9] to the most fit individuals to form
the new population. This ensures that more fit individuals have
a greater chance to survival and reproduction, while less fit
ones are more likely to be discarded[10]. In the next iteration
of the algorithm, the new population will be used[9]. This
process (Fig. 4) is repeated until the final goal is achieved[11].

Fig. 4. Genetic algorithm.

In our paper, the individuals are the coefficients in the
ADPCM filter. The fitness criterion is a cost function based
on the classification error between pre- and post-compression
images.

III. GA-ADPCM ALGORITHM

Since the genetic algorithm (GA) has the property of
finding the optimal solution and the ADPCM algorithm has
the property of minimizing the mean square error, these two
algorithms are combined into the GA-ADPCM algorithm
that can not only minimize the mean square error but also
minimize the classification error between pre- and post-
compression images. The flowchart is shown in Fig. 2. First,
we generate the initial population of random individuals,
which are the different sets of coefficients used in the ADPCM
predictor. Second, we implement the ADPCM compression
and decompression processing using these different sets of co-
efficients. Third, we apply SOM to the decompressed images.
The application of SOM to the original image should be done
at the beginning. Fourth, we calculate the classification error
between the decompressed image and the original image. We
sort the classification errors of all individuals, and then choose
the 50% fittest individuals and apply genetic operations,
e.g., crossover and mutation, to them. We create the new
coefficients population and do the iteration again.

The fitness function F to be minimized in GA is defined
as

F = Ce/N, (6)

where Ce is the number of pixels classified incorrect, and N
is the total pixels of the image. F becomes the percentage
of incorrect classified pixels. Ce is obtained by the following
steps: First, we do Cm = Co − Cg , where Co is the matrix
containing classification result of the original image, which
has all pixels assigned to different classes. Cg is the matrix
containing classification result of the image after ADPCM
compression and decompression system. Cm is the difference
between the two classified images. Second, we assign all the



nonzero points in Cm matrix to be 1 and add them together
to get the classification error Ce.

The cost function of this algorithm is no longer equation
(1) or (2). It is not quadratic, but a more complex function.
For instance, it may appear as in Fig. 5. In each part, A, B,
and C, respectively, the cost function is quadratic because of
the properties of the ADPCM. The LMS and EDS predictors
try to find one of the local minima of the cost function,
which means trying to find one of the points A, B, and C.
However, they may not guarantee the global minimum. Since
GA is then used to find the global minimum of the whole
cost function, the algorithm GA-ADPCM tries to find point
A in this example.

Fig. 5. Cost function of GA-ADPCM.

IV. SIMULATIONS

An example of hyperspectral cube is shown in Fig. 6. One
frame of the cube is used to be the original image in the
simulation and shown in Fig. 7. The size of the original image
is 512x512 pixels. To save the storage of the memory on
the computer and increase the speed of the performance, the
image was divided into blocks. Different block sizes were
tried, including 16x16, 32x32, and 64x64 pixels. In SOM,
different numbers of classifiers were also tried, including 3
classes, 4 classes, 6 classes, and 8 classes. In all these trials,
the performance was similar in that the classification errors
were smaller in GA-ADPCM than in ADPCM.

A. GA-LMS illustration performance

We first use LMS in the ADPCM system. Fig. 8 is one
64x64 block of the original image, and Fig. 9 is the classifi-
cation result of the original image. In SOM, 4 classes were
used. Fig. 10 is the classification result using LMS only, and
Fig. 11 is the classification result using GA-LMS. We can see
that all of these classification results are correlated, but small
differences are apparent between the images. Our purpose is
to reduce the differences, thus reducing classification error.
The total classification error using GA-LMS (0.066406) is
smaller than that using LMS (0.078125).

In GA, the individuals in each generation have different
fitness scores. The most fit individual who has the smallest

Fig. 6. Hyperspectral cube.

Fig. 7. One frame of the hyperspectral cube.

classification error is saved. Fig. 14 shows the fitness scores
of different generations. The red circles represent the smallest
fitness in each generation, the blue line represents the largest
fitness, and the green marks represent the average fitness
scores. We can see that the smallest fitness scores converge
to a certain value. The coefficients corresponding to the
individual for this fitness score is optimal because they can
minimize both the classification error and the mean square
error.

B. GA-EDS illustration performance

We also use EDS predictor in the ADPCM system. We use
the same block of the original image. Fig. 12 is the classifica-
tion result using only EDS. Fig. 13 is the classification result
using GA-EDS. The total classification error using GA-EDS
is 0.083008, and the error using EDS is 0.091064. When EDS
is used as the predictor, the performance is still improved by
using GA-EDS. Fig. 15 shows the fitness scores of different
generations in GA-EDS.

C. Statistic performance of GA-ADPCM

Table I lists the classification error comparison both be-
tween LMS and GA-LMS and between EDS and GA-EDS.
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Fig. 8. One block of original image.
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Fig. 9. Classified image from original image – colormap color.
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Fig. 10. Classified image from LMS image – colormap color.
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Fig. 11. Classified image from GA-LMS image – colormap color.
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Fig. 12. Classified image from EDS image – colormap color.
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Fig. 13. Classified image from GA-EDS image – colormap color.
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Fig. 14. Fitness score for GA-LMS.
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Fig. 15. Fitness score for GA-EDS.

The block size is 64x64 pixels and the class number is 4.
The table gives the errors of blocks (1,1) through (1,8). As
seen from the table, the GA-ADPCM performs better than the
ADPCM in minimizing classification error.

Different block sizes and class sizes were tested. Fig.16 -
Fig.23 illustrate the classification-error comparison between
the ADPCM and the GA-ADPCM. The red lines represent
the error using the ADPCM, while the blue lines are the
error using the GA-ADPCM. In these figures, all the red lines
are higher than the blue ones, meaning that the classification
errors are larger in ADPCM than in GA-ADPCM.

V. CONCLUSION

We have tried a new structure combining the compression
system and the classification system. The corresponding al-
gorithm (GA-ADPCM) is simulated. The filter coefficients
in ADPCM are optimized by adding the genetic algorithm.
The LMS and EDS predictors minimize the mean squared
error. In the genetic algorithm, the fitness function uses the
classification error between pre- and post-compression images
so that the filter coefficients are also changed to optimize the

TABLE I
CLASSIFICATION ERROR COMPARISON BETWEEN ADPCM AND

GA-ADPCM.

Block index LMS GA-LMS EDS GA-EDS
(1,1) 0.04248 0.034424 0.052734 0.04541
(1,2) 0.060303 0.049561 0.085938 0.070557
(1,3) 0.05127 0.040771 0.070801 0.061279
(1,4) 0.027588 0.023193 0.039551 0.032227
(1,5) 0.04248 0.027588 0.056641 0.04834
(1,6) 0.039063 0.037354 0.05127 0.050781
(1,7) 0.057129 0.049072 0.065186 0.05835
(1,8) 0.069336 0.065674 0.092773 0.080566
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Fig. 16. Classification error comparison between LMS and GA-LMS: block
size=16, classes=4.
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Fig. 17. Classification error comparison between LMS and GA-LMS: block
size=32, classes=4.
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Fig. 18. Classification error comparison between LMS and GA-LMS: block
size=64, classes=4.
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Fig. 19. Classification error comparison between LMS and GA-LMS: block
size=16, classes=3.
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Fig. 20. Classification error comparison between LMS and GA-LMS: block
size=16, classes=3.
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Fig. 21. Classification error comparison between LMS and GA-LMS: block
size=32, classes=6.
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Fig. 22. Classification error comparison between LMS and GA-LMS: block
size=64, classes=8.
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Fig. 23. Classification error comparison between EDS and GA-EDS: block
size=16, classes=4.



classification error. The simulation results demonstrate that
the algorithm has good performance. However, the cost is the
computation complexity. Future work will include combining
a multiplier-free adaptive filter[12] with the genetic algorithm.
Different classification methods will also be attempted.
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